
© 2022 Larsen & Toubro Infotech Limited

by Fosfor

Multi Cloud &
Hybrid Deployment

Point of View



2

Introduction
Though cloud adoption is growing year on year, an increasingly greater number of 
organizations and technology leaders are concerned about the significant additional 
higher cost cloud brings in. This brilliant article by Sarah Wang and Martin Casado explains 
why it’s important to not be married to one cloud and how “cloud repatriation” should be a 
design decision on day one of any cloud adoption journey.

This document explains how Spectra seamlessly supports multi-cloud and hybrid 
deployment models that lets the users take advantages of any cloud or on-premises 
environments without ever being locked in with any of them – and even with Spectra itself.

Key Concepts
Spectra is designed to support true hybrid deployments natively and seamlessly.
It does so by tactically separating the host environment and the execution engines.

Spectra Host Environment

ETL Engineer

Host Environment

Kubernetes Cluster

Load
Balancer

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

Fig.: Simplified representation of Spectra’s host environment deployment

© 2022 Larsen & Toubro Infotech Limited

https://a16z.com/2021/05/27/cost-of-cloud-paradox-market-cap-cloud-lifecycle-scale-growth-repatriation-optimization/


3

The Spectra’s host application can be hosted anywhere – on any cloud or on-premises. 
There’s only one host application per Spectra installation. 

All ETL pipelines designed using the Spectra’s designer tool are versioned in Git. It can 
use any popular Git implementation technologies that the organization has adopted, 
e.g., GitHub, Gitlab, or Bitbucket. 

All other metadata including audit trails, RBAC controls, run history, etc. are stored into a 
centralized meta store DB (typically MySQL or Postgres).

One-to-many execution engines can be used, and they can be hosted anywhere on any 
cloud or on-premises. The host environment connects and pushes the ETL workload 
onto them, and no data is persisted in the execution engine. That makes it easy to add 
and remove them as needed, on the fly.

Execution Engine 

ETL Engineer

Host Environment

Execution Engine on
Private Cloud

Execution Engine on
Public Cloud

Execution Engine on
Premises

Execution Engine
PAAS

Fig.: Spectra execution engine types

© 2022 Larsen & Toubro Infotech Limited



4

Spectra supports different types of execution engines; the host application generates 
the ETL code based on the type of execution engines. For example, for Spark-based 
execution engines such as Databricks, EMR, HDInsight, etc., the host application 
generates Spark code (on Java) and pushes it to the execution engine via Livy end 
points. Similarly for Snowflake execution engine, the host application generates 
Snowflake stored procedures and runs it.

Generate Spark
Code and Submit
to spark Cluster

Generate Snowflake
Stored Procedure
and run

Generate BigQuery
Stored Procedure
and run

ETL Engineer

Host Environment

Sp
ar

k
C

lu
st

er
s

Sn
ow

fla
ke

W
ar

eh
ou

se
s

Bi
gQ

ue
ry

En
gi

ne
s

Fig.: Examples of execution engines

© 2022 Larsen & Toubro Infotech Limited



Hybrid Implementation Examples
Here are a few sample hybrid implementations which show how a common host 
environment supports different types of execution engines hosted on different 
clouds and / or on premises.

Fig.: Hybrid execution engine example with host environment in AWS

Fig.: Hybrid execution engine example with host environment in Azure

ETL Engineer

Google Dataproc

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

On-premise

Vanilla Spark cluster

Spark on Kubernetes

ETL Engineer

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

+
Azure

Load Balancer

© 2022 Larsen & Toubro Infotech Limited

Google Dataproc Spark on Kubernetes

On-premise

Vanilla Spark cluster

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

5



Choosing the Right Host Environment
Though one can choose to deploy the host application anywhere, it’s always a better 
idea to choose your primary cloud as the host environment. It’s also important to 
consider the connectivity from the host environment to all execution engines that the 
organization is planning to use.

However, it’s practically very easy to lift and shift the host application from one cloud to 
another or to on-premises – thanks to Spectra’s metadata-driven design. Here's how 
that's done.

That’s it! The user can now start using the new host environment on Azure.

Step 1: Install Spectra host application on Azure

Step 2: Configure the new host application to point to the meta-store and Git hosted in AWS

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

ETL Engineer

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r Fosfor Micro

Service 1
Fosfor Micro

Service 2

Fosfor Micro
Service 3

+

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

+
Azure

Load Balancer

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

Azure
Load Balancer

© 2022 Larsen & Toubro Infotech Limited

ETL Engineer

ETL Engineer

© 2022 Larsen & Toubro Infotech Limited

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

Illustration of How to Move the Host Application From AWS to Azure
Initial state: User is connected to the host application deployed in AWS

6



7

Now if the user wants to completely migrate off AWS, there’s the optional step of 
one-time movement of metadata and GIT repositories to Azure and configure the host 
application to point to the new meta-store and git. This way, the dependency on AWS 
can be completely removed.

Efficiency
It’s always a good idea to choose the best fit technology for the given type of problem. 
For example, Spark is better suited for processing and transforming huge data from 
different types of sources that involves complex joins. However, in many cases when the 
source and target are already the Snowflake tables, it makes sense to push the ETL 
workload too, to Snowflake.

Proximity
Choosing the execution engine closer to the data often saves a significant data transfer 
over the network and thus results in better performance. For example, if you need to 
read a huge dataset from S3, transform and push it to Redshift, it makes sense to select 
an execution engine from AWS and from the same region.

Cost
Doing a cost comparison on multiple execution engines helps identify the best option in 
most of the cases. And this may even surprise you too. For example, we have found that 
Spark on AKS is cheaper than HDInsight and is often faster too.

Efficiency: Pick the right 
tech for the right job

Proximity: Bring the 
party to your data

Cost: Sometimes 
cheaper is better

© 2022 Larsen & Toubro Infotech Limited

Fig.: Similar steps can be followed to move the host application between any cloud or on-premises environment

ETL Engineer

Fosfor Micro
Service 1

Fosfor Micro
Service 2

Fosfor Micro
Service 3

N
G

IN
X 

In
gr

es
s 

C
on

tr
ol

le
r

+
Azure

Load Balancer

Choosing the Right Execution Engines
There are the following three key levers to consider while choosing the right 
execution engines.



Fig.: While running a flow, it shows the default execution engine

Fig.: The user can change the execution engine by selecting the configured engines from the drop down

Switching Between Execution Engines
Switching between execution engines is as easy as clicking a few buttons. The user 
can configure different execution engines in Fosfor Manager and can select them 
while running the flow in Spectra.

© 2022 Larsen & Toubro Infotech Limited 8



9

Switching DataOps Platforms
While Spectra eliminates the concerns of being locked into any cloud and makes it easy 
for the user to stay independent of the execution engines, what happens in the unlikely 
event that a better DataOps platform than Spectra emerges in the future? Spectra 
addresses this concern by providing the user with the native ETL code upon the event 
of a contract termination. Spectra provides the execution engine specific native code 
for every ETL job ever designed and run on Spectra, at a minimal additional cost.

For example, for ETL jobs designed on Spectra and pushed to Spark engines, Spectra 
will provide the Spark code (on Java) and for the ETL jobs pushed to Snowflake engines, 
Spectra will provide the Snowflake-stored procedure.

This eliminates the concern of ever being locked into Spectra.

Spectra’s intuitive user interface and support for on-demand execution engine 
switching, makes it easy for the user to experiment with different execution engines to 
find the one that is the best fit for a given job. It also makes it easier for the user to 
switch to a new engine later if that makes sense for the organization.

This feature is also invaluable in the event that the organization decides to “repatriate” 
to on-premises hosting due to increasing cloud costs.

Conclusion
While aggressively adopting new technologies and clouds, modern-day, data-driven 
enterprises are trying to avoid getting locked into any of them and to keep exploring 
“the new and the better” in this ever-evolving technology space. Spectra is the perfect 
tool to make this possible.

© 2022 Larsen & Toubro Infotech Limited



By Gireesh Puthumana

The Fosfor Product Suite is the only end-to-end suite for optimizing all aspects of the data-to-decisions lifecycle.
Fosfor helps you make better decisions, ensuring you have the right data in more hands in the fastest time possible.
The Fosfor Product Suite is made up of Spectra, a comprehensive DataOps platform; Optic, a data fabric to facilitate data 
discovery-to-consumption journeys; Refract, a Data Science and MLOps platform; Aspect, a no-code unstructured data 
processing platform; and Lumin, an augmented analytics platform. Taken together, the Fosfor suite helps businesses 
discover the hidden value in their data. The Fosfor Data Products Unit is part of LTI, a global technology consulting and 
digital solutions company with hundreds of clients and operations in 31 countries. For more information, visit Fosfor.com.

Associate Director, 
Product Engineering

Gireesh is an Associate Director, Product Engineering and 
Innovation leader at Fosfor. He comes with extensive startup 
experience and has mastered the art of building products and 
teams from grounds up. He is passionate about open-source 
technologies and often plays the role of key architect of Fosfor. 
With his profound product insight and technology expertise, 
he has spearheaded many successful client adoption journeys. 
He is a lean startup practitioner who focuses on smaller 
result-oriented iterations both in product development and in 
solving enterprise data and analytics problems

© 2022 Larsen & Toubro Infotech Limited

https://www.fosfor.com/

