
The secret weapon
of high-performing
DevOps teams
CI/CD and Amazon Web Services

Executive summary
It’s no secret that high-performing teams are constantly adapting to modern software development

practices to stay ahead of the industry. Teams need to remain on the cutting edge, practicing

techniques that enable faster development time to get to market faster, confidently. The ability

to release modern applications is supported by three pillars: continuous integration, continuous

deployment, and infrastructure as code. In our last ebook, we covered evaluation criteria for

choosing your modern DevOps toolset, but once you’ve chosen a CI tool, what happens next?

Today, we are focusing on modern architectures and their effect on developer agility.

3The secret weapon of high-performing DevOps teams

To begin, it’s important to recap the basics. What
is continuous integration? Where does it sit in the
development pipeline? What are some evaluation
criteria teams should use when choosing a CI tool?

Continuous integration and delivery (CI/CD) is a
software development strategy that increases the
speed of development while ensuring the quality of
the code that teams deploy.

CHAPTER ONE

Recap of the basics

Let’s take a look at where a CI platform would fit
in the development pipeline and why it can have a
dramatic impact on the productivity and efficiency of
development teams.

All projects start at the source code. CI platforms
pull in new and existing code from the VCS and build
that code in clean containers or on virtual machines.
Then, tests are run to evaluate whether to add the
new code to the existing code, sending a passed/
failed build status. Once the code has been built and
tested, it is ready to be deployed.

4The secret weapon of high-performing DevOps teams

CI in the development pipeline

Write
code

Store
code

Continuous Integration
(CI)

Deploy Run Measure

5The secret weapon of high-performing DevOps teams

CI/CD selection criteria

AWS provides an extensive selection of tools for
software development. Although many teams
use AWS services, their specific toolchain may
vary greatly given their needs. As more players
have entered the CI/CD market over the last
few years, it’s become increasingly important
to determine which tool will best suit your
company’s needs. There are several high-level
distinctions between platforms on the market.
Here are our recommended evaluation criteria
and questions to ask when choosing a provider:

Toolchain compatibility
• Can the platform support my VCS?
• Does the platform integrate with the

other tools I use?
• Monitoring
• Notifications
• Reporting
• Security
• Testing

Security
• Is the platform secure?
• Is the platform FedRAMP certified

and SOC 2 compliant?
• Does the platform have security for

my hosting method? (e.g., cloud,
on-premise)

• Is there a simple way to manage
secrets and environment variables?

6The secret weapon of high-performing DevOps teams

Ease of use
• How quickly and easily can I set the system up?
• What is the onboarding process like?
• How is the ongoing support after I’ve onboarded?

Community
• Are many engineers using the platform?
• Is there a community I can reach out to for

support or collaboration?

Deployment
• Does the platform allow for seamless deploy to

the most popular hosting solutions?
• Does the platform deploy serverless applications

to your favorite cloud provider?
• Does the platform let you manage your

microservices with Kubernetes? Terraform?

7The secret weapon of high-performing DevOps teams

Migrate to modernize

Your team doesn’t have to be the best at DevOps
to be one of the best dev teams. You don’t have to
deploy a thousand times a day or spend a million
dollars a month on infrastructure. Simply starting
and committing to the practice of CI/CD is a reliable
path to engineering success.

Once you’ve chosen a CI tool, what happens next?
How do you optimize your usage to ensure modern
development practices? What architectural patterns
help you automate quicker? How do you measure the
success of your team?

8The secret weapon of high-performing DevOps teams

CHAPTER TWO

Modern Architectural Patterns

Research shows that high-performing DevOps
teams continue to outperform their organizational
counterparts with: 200x more frequent deployments,
24x faster recovery from failure, a 3x lower change
failure rate, and 2,555x shorter lead time*.

It is important to emphasize here that speed alone
is not the goal. The combination of automation,
removing manual tasks from the process, and shifting
testing left will enable speed and quality. Consistency
of delivery is the unsung hero of automation: speed
without reliable, consistent quality is not helpful.

Digital transformation and cloud migration have
become buzzwords in software development. What
does a cloud-native organization with CircleCI and
AWS look like? What architectural patterns help
teams build better code with confidence?

Microservices
Historically, applications were built with monolithic,
three-tiered web architectures. Modern architectures
can look a lot like a three-tier web architecture but
with some very important differences.

The first major difference with this architecture is
that what we see here is not the entire application —
it’s not a monolith, it’s a single microservice.

9The secret weapon of high-performing DevOps teams

Our customers run tens, hundreds, or even thousands
of microservices, which improves their scalability and
fault tolerance. The way you operate an application
that releases multiple times a day is very different
than one that releases 1 to 2 times per year.

Compute
The logic you write is important in differentiating
your organization. We’re building compute
technologies that make focusing on this logic easier
than ever.

CircleCI offers a wide range of machine types and
class sizes. Selecting larger machines to run your
workflow can reduce the time it takes for that
workflow to run.

Test-splitting
Intelligent test-splitting and parallelization options
allow for robust test suites to run in significantly
shorter times. Because of this, increasing your testing
does not cause a proportional increase in workflow
duration.

Caching
Advanced caching options significantly reduce
the duration of a workflow when optimized. Many
packages used to build your application can be
cached and reused, saving you the time involved with
downloading these packages on every run. Docker
layer caching, a premium feature on CircleCI, can allow
for an even greater reduction in workflow duration.

Debugging
Debugging failed builds is best when you have access
to the machine where the workflow failed. CircleCI
offers the ability to rerun a failed workflow and to use
SSH to gain access to the machine that fails. Getting
a signal fast is only one side of the CI feedback loop.
The other side is the ability to quickly recover.

10The secret weapon of high-performing DevOps teams

CHAPTER THREE

Developer Agility

Naturally, modern DevOps lends itself to
developer agility. By optimizing and automating
your processes, teams will now have the time to
learn new skills. In this chapter, we’ll cover tips
for automating, abstracting, and standardizing
developer agility.

Continuous integration can be viewed as an agility
creator. CI puts the ‘fail fast’ mentality into practice:
break things and then fix them quickly. Event-driven
applications enable not just the decoupling of
services, but also of the teams that built them. This
facilitates a dramatic increase in team agility.

11The secret weapon of high-performing DevOps teams

Orbs

CircleCI offers orbs, which are reusable packages
of configuration. Abstracting layers of code from
CI configuration files into open source, community-
created and -validated components allows for adding
and replacing services without the risk of failure.
Using well-tested configuration components reduces
the sources of errors, and using orbs to integrate
testing suites into your CI pipeline means getting
more information from your runs. We observed that
recovery time for workflows decreases with increased
orb usage (from 0 to 1 orb and from 1 orb to many).

Orbs make for an incredible amount of agility.
Abstracting boilerplate config makes learning the
ropes on a new project much easier since all of the
code that is not specific to the project has been
packaged in the orb.

Reusable config also helps in updating common dev
paradigms across projects. If all of your projects use
the same deployment (and you’ve encapsulated that
deployment into an orb), then a decision to change
deploy means updating once and then rolling all
projects to the new orb version.

CircleCI has a suite of AWS integrations that
allow users to easily execute pre-configured AWS
operations in their CI/CD pipelines. Our out-of-the-
box solutions allow users to build and test code,
create and push artifacts, and deploy and update
applications to their AWS account. CircleCI’s AWS
integrations are among our most popular orbs. As of
now, they have been used more than 35 million times.

12The secret weapon of high-performing DevOps teams

CLI

Install and configure
the AWS command-line
interface (awscli).

AWS Systems
Manager Parameter
Store

Load AWS Systems
Manager Parameter Store
keys as environment
variables.

ECR

Build images and push
them to the Amazon
Elastic Container Registry
(Amazon ECR).

ECS

Deploy to and update
Amazon Elastic Container
Service (Amazon ECS)

EKS

Deploy to and update
Amazon Elastic Container
Service for Kubernetes
(Amazon EKS).

CodeDeploy

Deploy applications to AWS
CodeDeploy.

S3

Use this set of tools for
working with Amazon S3.
Requirements: bash.

AWS-SAM-Serverless

Build, test, and deploy
your AWS SAM serverless
applications on CircleCI
utilizing the AWS Serverless
Application Model.

Elastic Beanstalk

Deploy and scale web
applications and services
via AWS Elastic Beanstalk
with CircleCI.

13The secret weapon of high-performing DevOps teams

CHAPTER FOUR

Metrics that Matter

Every company is now a tech company, and many
of them are already practicing continuous
integration. Are they doing it well? Our data shows
that you don’t need to be an expert at CI to see a
material increase in the metrics most important to
your development teams.

Teams using CI are incredibly fast: 80% of all
workflows finish in less than 10 minutes.

• Teams using CI stay in flow and keep work
moving: 50% of all recovery happens in under
an hour.

• 25% recover in 10 minutes.

• 50% of orgs recover in 1 try.

14The secret weapon of high-performing DevOps teams

Our comprehensive data on engineering team
performance has identified these four benchmarks:

• Throughput: the number of workflow runs
matters less than being at a deploy-ready state
most or all of the time

• Duration: teams want to aim for workflow
durations in the range of five to ten minutes

• Mean time to recovery: teams should aim to
recover from any failed runs by fixing or reverting
in under an hour

• Success rate: success rates above 90% should
be your standard for the default branch of an
application

Optimizing these four key metrics leads to a
tremendous advantage over organizations that have
not yet begun to adopt continuous integration and
delivery. These metrics drive digital transformation
for software development and delivery, and show
that it is possible to optimize for stability without
sacrificing speed.

If you don’t know how well your team is doing, it
is impossible to set realistic targets for them. The
ability to measure your engineering productivity in
order to establish a baseline is absolutely necessary
for staying competitive.

15

CHAPTER FIVE

Next Steps

Technical documentation

Review our getting started docs to get up
and running on CircleCI. If you’re interested in
integrations, learn more about orbs or read about
our GitHub and Bitbucket integrations.

Access your free trial in AWS Marketplace
to explore how CircleCI can work for your
team and support your AWS infrastructure
requirements.

