
WHITEPAPER

High-Performance
Applications With

Distributed Caching
Get integrated caching from
a complete NoSQL solution

WHITEPAPER 2

TABLE OF CONTENTS

Executive summary	 3

Importance of a cache in enterprise architectures	 4

	 Common use cases	 4

Key requirements	 5

Distributed caching with Couchbase Server	 6

	 Architectural advantages	 6

		 Perform at any scale	 6

		 Manage with ease	 7

		 Develop with agility	 8

	 Caching and document performance benchmarking	 9

Why companies choose Couchbase	 10

	 Combined technical advantage	 11

Couchbase alternatives	 12

	 Limitations of Redis	 12

	 Limitations of Memcached	 13

Beyond caching with a complete NoSQL solution	 14

WHITEPAPER 3

Caching can

boost application

performance as well as

reduce costs.

Executive summary

For many web, mobile, and Internet of Things (IoT) applications, distributed caching is a key

requirement, for improving performance and reducing cost. By caching frequently accessed

data – rather than making round trips to the backend database – applications can deliver highly

responsive experiences. And by reducing workloads on backend resources and network calls to

the backend, caching can significantly lower capital and operating costs.

Distributed caching solutions solve for three common problems – performance, manageability,

scalability – in order to gain effective access to data in high-quality applications.

High performance Easy to manage Elastic scalability

Figure 1: The three common requirements for distributed caching solutions

High performance is a given, because the primary goal of caching is to alleviate the bottlenecks

that come with traditional databases. This is not limited to relational databases, however. NoSQL

databases like MongoDB™ also have to make up for their performance problems by recommending

a third-party cache, such as Redis, to service large numbers of requests in a timely manner.

Caching solutions must be easy to manage, but often are not. Whether it’s being able to easily

add a new node, or to resize existing services, it needs to be quick and easy to configure. The

best solutions provide command line, GUI, DBaaS (database-as-a-service), and REST APIs to

help keep things manageable.

Elastic scalability refers not only to the ability to grow a cluster as needed, but also refers to

the ability to replicate across multiple data centers (cloud and/or on-prem). Cross data center

replication (XDCR) is a feature that is often missing or performs poorly across many caching

technologies. To achieve this scalability, several products often have to be glued together,

thereby decreasing manageability and greatly increasing cost.

Based on Couchbase’s experience with leading enterprises, the remainder

of this document:

•	 Explains the value of caching and describes common caching use cases

•	 Details the key requirements of an effective, highly available, distributed cache

•	 Describes how Couchbase Server provides a high-performance, low-cost,

and easy-to-manage caching solution

•	 Explains key differences in architecture and capabilities between Couchbase

Server, Redis, and Memcached

Caching vs Buffering

Caching and buffering

are techniques that

are often conflated.

While many databases

make heavy use of

memory for buffering,

this does not mean

they have a managed

cache. Buffering stores

transitory data in

memory temporarily

while it’s being read or

written. Caching stores

data in memory until

it’s evicted.

Importance of a cache in enterprise architectures

Today’s web, mobile, and IoT applications often need to operate at large scale: thousands to

millions of users, terabytes (or even petabytes) of data, submillisecond response times, multiple

device types, and global reach. To meet these requirements, modern applications are built to run

on clusters in distributed computing environments, either in enterprise data centers or on public

clouds such as Microsoft Azure, Amazon Web Services (AWS), or Google Cloud Platform (GCP).

Caching is a technology to boost application performance as well as reduce costs. By caching

frequently used data in memory – rather than making database round trips and incurring disk

IO overhead – application response times can be dramatically improved, typically by orders

of magnitude.

In addition, caching can substantially lower capital and operating costs by reducing workloads

on backend systems and reducing network usage. In particular, if the application runs on a

relational database like Oracle – which requires high-end, costly hardware in order to scale

vertically – a distributed, horizontally scaling caching solution that runs on low-cost commodity

servers can reduce the need to buy and manage expensive resources.

APP APP APP

APPLICATION TIER

...

CACHE

...

DATABASE

...

DATA ACCESS LAYER

1

1 Write to cache and database.

RAM

APPLICATION TIER

...

CACHE

...

DATABASE

...

2 Read from cache.

3 If no longer cached, read from database.

2 3

DATA ACCESS LAYER

APP APP APP

RAM RAM RAM RAM RAM

Figure 2: High-level database cache architecture

Common use cases

Caching is used across numerous applications and use cases, including:

•	 Speeding up RDBMS – Many web and mobile applications need to

access data from a backend relational database management

system (RDBMS) – for example, inventory data for

an online product catalog. However, relational

systems struggle with large scale, and can

be easily overwhelmed by the volume of

requests from web and mobile applications,

particularly as usage grows over time.

Caching data from the RDBMS in memory

is a cost-effective technique to speed up

the backend.

WHITEPAPER 4

WHITEPAPER 5

The use of a cache

should not place

undue burden on the

operations team. It

should be reasonably

quick to deploy and

easy to monitor and

manage.

What is a
“warm” cache?

A “cold” cache is an

empty, or near-empty

cache that is yet to be

filled with active data.

The benefits of caching

will not be reached

until the cache gets

“warmer”, i.e. starts to

fill up with active data.

Since a cache uses

memory, any reboots

or crashes, especially

with a non-distributed

system, will result in

restarting with a

“cold” cache.

•	 Managing usage spikes – Web and mobile applications

often experience spikes in usage (for example, seasonal surges

like Black Friday, Cyber Monday, during prime time television, etc.).

Caching can prevent the application from being overwhelmed and can

help avoid the need to add expensive backend resources.

•	 Mainframe offloading – Mainframes are still widely used in many industries, including

financial services, government, retail, airlines, and heavy manufacturing. A cache is

used to offload workloads from a backend mainframe, thereby reducing MIPS costs

(i.e., mainframe usage fees charged on a “millions of instructions per second” basis),

as well as enabling completely new services otherwise not possible or cost prohibitive

utilizing just the mainframe.

•	 Token caching – In this use case, tokens are cached in memory in order to deliver high-

performance user authentication and validation. eBay, for example, deploys Couchbase

Server to cache token data for its buyers and sellers (over 100 million active users globally,

who are served more than 2 billion page views a day).

•	 Web session store – Session data and web history are kept in memory – for example, as

inputs to a shopping cart, real-time recommendation engine on an e-commerce site, or

player history in a game.

Key requirements

Enterprises generally factor six key criteria into their evaluation. How you weigh them depends

on your specific situation.

1.	Performance: Specific performance requirements are driven by the underlying application.

For a given workload, the cache must meet and sustain the application’s required steady-

state targets for latency and throughput. Efficiency of performance is a related factor that

impacts cost, complexity, and manageability. How much hardware (RAM, servers) is needed

to meet the required level of performance?

2.	Scalability: As the workload increases (e.g., more users, more data requests, more

operations), the cache must continue delivering the same steady-state performance. The

cache must be able to scale linearly, easily, affordably, and without adversely impacting

application performance and availability.

3.	Availability: Data needs to be always available during both unplanned and planned

interruptions, whether due to hardware failure or scheduled system maintenance, so the

cache must ensure availability of data with as much uptime as possible, and be kept as

“warm” as possible to ensure performance.

4.	Manageability: The use of a cache should not place undue burden on the operations team.

It should be reasonably quick to deploy and easy to monitor and manage. All other things

equal, simplicity is always better. Adding a cache to your deployment should not introduce

unnecessary complexity or make more work for developers.

5.	Affordability: Cost is always a consideration with any IT decision, both upfront

implementation as well as ongoing costs. Your evaluation should consider total cost of

ownership, including license fees as well as hardware, services, maintenance, and support.

WHITEPAPER 6

Distributed caching with Couchbase Server

Couchbase Server (and Couchbase Capella™ DBaaS) has become an attractive alternative to

caching tools like Redis and Memcached. It’s the only solution that fully meets the requirements

of modern web, mobile, and IoT applications that need to support thousands to millions of users,

handles large amounts of data, and provides highly responsive experiences on any device.

For many enterprises, Couchbase hits the sweet spot by delivering performance, scalability, and

availability, while being easy to deploy and manage. Couchbase is an affordable choice, with

enterprise support available from Couchbase.

General-purpose NoSQL database with Memcached roots

Couchbase Server is a general-purpose, document-oriented NoSQL database and has a

strong caching heritage. Couchbase founders include the engineers who drove Memcached

development in conjunction with the engineers who open sourced it at LiveJournal and were

using it at Facebook. LiveJournal was one of the internet’s first social networks, before Facebook

and Twitter, and it faced frequent usage spikes as well as continuously growing workloads that

overwhelmed backend resources.

To solve those issues, LiveJournal engineers built Memcached as a high-performance cache

that’s “dead simple” to use. While it squarely met the goals for high performance and simplicity,

Memcached was not designed as a high availability caching solution, so features like auto failover

and cross data center replication (XDCR) were not built into the product.

Architectural advantages

Couchbase Server was built for distributed caching with a focus on agility, manageability, and

scalability for mission-critical applications.

Perform at any scale

•	 Memory and network-centric: Couchbase’s memory-first architecture, with integrated

document cache, was designed to deliver high-throughput rates in distributed computing

environments while providing submillisecond latency and resource efficiency. The network-

centric architecture with a high-performance replication backbone allows new workloads

to be added while maintaining performance at scale.

•	 Always-on, edge-to-cloud: Couchbase is designed to be fault tolerant

and highly resilient at any scale and on any platform – physical

or virtual – delivering always-on availability in case of

hardware failures, network outages, or planned

maintenance windows.

•	 Consistent performance at any scale:

Couchbase is designed to provide linear,

elastic scalability for web, mobile, and

IoT applications using intelligent, direct

application-to-node data access without

additional routing and proxying configuration

and overhead.

•	 Workload isolation and optimization: Adding

or removing nodes can be done without any

downtime or code changes. Couchbase’s

Multi-Dimensional Scaling (MDS) allows users

to isolate their workloads while incrementally

increasing access to specific services on the

cluster resources as needed.

In designing Couchbase
Server, the Memcached
engineers extended
its high performance
and simplicity to
incorporate high
availability and easy
manageability.

A benchmark run on
Google Cloud Platform
showed 50 nodes of
Couchbase Server
sustained 1.1 million
operations per second.
To deliver comparable
performance, Apache
Cassandra needed
300 nodes.

7WHITEPAPER

Manage with ease

•	 Global deployment with low write latency: Couchbase

is often selected specifically because of its simple and powerful

active-active cross data center replication (XDCR) capabilities that support

varying types of replication topologies (unidirectional and bidirectional

in any combination).

•	 Flexible deployment options: Multiple methods of deployment are supported including

on-prem, hybrid, cloud, Kubernetes, and Couchbase Capella DBaaS.

•	 Consistent performance when adding microservices: Couchbase eases management

with automatic sharding, replication, and failover for easy scale out and high availability.

Autonomously maintain application availability across upgrades, node failures, network

failures, or even cloud provider failures (via XDCR). All functionality is made available across

physical, virtualized, public cloud, container, and DBaaS environments.

•	 Full-stack security: End-to-end encryption of Couchbase data is available both over the

wire and at rest. Flexible security options are possible with role-based authentication that

supports LDAP, PAM, and X.509. Embedded data and administrative auditing tools allow

for robust control of enterprise data.

•	 Affordability: Licensing costs of Couchbase is typically a fraction of other solutions like

Oracle Coherence, often as much as 80% less. Couchbase Server can be freely downloaded

without any license fees, allowing you to prototype and experiment with zero cost or risk.

Couchbase Capella has a free trial, as well as Basic, Developer Pro, and Enterprise pricing

plans. Couchbase is designed to run efficiently with data volumes that are larger than

memory, not requiring costly scale-out to more nodes just to fit more data in memory

(like memory-only caches, including Redis). And because Couchbase is far less complex

to deploy and manage, it takes fewer resources to support it.

WHITEPAPER 8

Develop with agility

•	 Flexible schema for continuous delivery: Couchbase can handle both simple and complex

JSON documents. Developers can access data through a flexible data model that adjusts

as needed. A new field can be easily added and then made available to queries. Schema

changes are not onerous and do not result in complex remapping or downtime while testing

new data structures.

•	 Full-featured SQL for JSON: Standard SQL has been extended for JSON querying and

analytics to allow developers to use familiar database skills with Couchbase.

•	 Versatile data access patterns: Couchbase’s set of data access methods include key-value

lookup, SQL++ querying, full-text search, real-time analytics, and server-side eventing –

available across cloud, mobile, and edge devices.

•	 No hassle scale out: Application code using Couchbase does not need to change when a

cluster grows in size – from development laptop to a multi-node production deployment. No

manual re-sharding or re-balancing is required by any application, and cluster configuration

information is all managed behind the scenes by the topology-aware clients.

•	 Simplicity and ease of development: It’s easy for developers to work with through the

officially supported SDKs that are available for all popular languages (Java, .NET, Python,

PHP, Node.js, Go, and C). Rich integration is available via frameworks and components such

as Spring Data, Apache Spark, LINQ, and more.

APP APP APP

APPLICATION TIER

...

User Requests

RDBMS

Cache Misses
and Write
Requests

Read-Write
Requests

Active Active Active

Replica Replica Replica

COUCHBASE SERVER CLUSTER

Replication

Figure 3: Architecture of deploying a Couchbase Server

cluster as a caching layer

Caching and document performance benchmarking

Couchbase supports typical caching use cases, and also supports more challenging document

database scenarios as well; in both of these scenarios, it outperforms the competition.

Benchmark analysis has been performed by third-party consulting company Altoros. They ran

various benchmarks against Couchbase and other NoSQL products (MongoDB and Dynamo)

that are generally not used as caching solutions. Couchbase outperformed these products for

best-in-class cache as well as highest performing document database.

Results shown in Figure 4 demonstrate how strongly Couchbase competes with other NoSQL

vendors in multiple clustering scenarios. One of the use cases tested was for caching scenarios

in particular, with a common high-volume, key-value workload.

NODES X RECORDS

WORKLOAD A: 50% READ & 50% UPDATE

T
H

R
O

U
G

H
P

U
T

 (
O

P
S

/S
E

C
)

L
A

T
E

N
C

Y
 (M

S
)

4-NODES X
50M RECORDS

10-NODES X
125M RECORDS

20-NODES X
250M RECORDS

Couchbase

MongoDB

DataStax

400K

300K

200K

100K

0

20

15

10

5

0

Couchbase

MongoDB

DataStax

Figure 4: Altoros benchmark comparing Couchbase, MongoDB, and DynamoDB performance

with a cached key-value lookup and active read/write workload

In addition to caching, there are other workloads in the benchmark

that serve as examples of how Couchbase solves other common

scenarios such as serving as a database for

an enterprise source of truth or system

of record solution.

WHITEPAPER 9

WHITEPAPER 10

SQL++ is the

next-generation

query language

for managing JSON

data using familiar

SQL-based syntax.

System of record

Operating as a system of record for enterprise data is another distinct role

that Couchbase can serve. In this case, Couchbase operates as both a cache

and the authoritative primary database for applications, providing the

durability and stability that is needed for any primary database application.

This is the domain of traditional relational databases but has become

increasingly popular for NoSQL databases to address, especially on cloud

and web platforms.

There is a natural evolution from caching for a database application to aggregating

from other database sources as a system of record and, then, ultimately to moving source

databases over into Couchbase. In all cases, key Couchbase features help users easily make

those transitions while minimizing risk and unlocking value.

Key features such as SQL queries, ACID transactions, relational-structure mirroring, full-text

searches, and real-time SQL++ analytics across a range of internal sources all factor into building

more than just a caching system.

To learn more about how well these types of queries perform on Couchbase, versus other

NoSQL products, see the charts, queries, and testing approaches used in benchmark reports at

couchbase.com/benchmarks.

Why companies choose Couchbase

Couchbase is a great fit for many caching scenarios. Many leading companies have deployed

Couchbase Server for mission-critical applications, including many of the world’s leading

enterprises:

LinkedIn – With over 300 million members, LinkedIn uses Couchbase to cache over 8 million

real-time metrics (over 12TB of data). Over 16 million entries are loaded into Couchbase every

5 minutes.

Marriott – Supporting 6,700 global hotel properties, Marriott moved its reservations system

from a relational database to Couchbase. The result: reduced costs while maintaining 30 million

documents and 4,000 transactions per second.

Amadeus – Amadeus, the leading provider of travel software and technology solutions for

the global travel industry, moved to Couchbase after running Memcached on top of MySQL to

maintain high performance. The company now processes 7 million requests per sec. at <2.5 ms

response times.

eBay – The world’s largest online auction marketplace uses Couchbase to cache over 100 million

authentication tokens per day to ensure session validity. eBay achieves over 300,000 writes per

second with Couchbase.

https://www.couchbase.com/benchmarks
https://www.couchbase.com/customers/

So why have these enterprises chosen Couchbase over the alternatives?

Many caching solutions are simple key-value stores with in-memory capabilities and some ability

to scale out. Couchbase is instead built from the ground up to deliver elastic performance at

scale – the very foundation of a superior caching tier.

In addition, Couchbase builds on this performance with a complete document database. High

availability, powerful SQL-based query, native mobile integration, ad hoc analytics, and text

search combine to empower enterprises beyond simple caching.

Combined technical advantage

When you combine all the architectural advantages of Couchbase, you have a comprehensive,

high-performance NoSQL database platform to build future use cases with. While caching

is a great use case to get started, once your data is in Couchbase, there is so much more

that is possible.

Other features include SQL querying using the Couchbase NoSQL query language (SQL++) –

effectively letting you query JSON data without having to enforce a schema or transform your

data to behave a certain way just to get answers to queries.

Advanced real-time analytic queries are also possible – as well as full-text searches. Many

developer-centric features exist in Couchbase, including server-side event processing, operation

tracing, ACID transactions, scope/collection organization, and automatic application failover

between clusters.

These are all features that the most demanding teams require. The remainder of this paper

explores these concepts further and contrasts them with other solutions within the overall

context of caching solutions.

WHITEPAPER 11

WHITEPAPER 12

Couchbase alternatives

Memcached and Redis are two examples of solutions that are part of the broader landscape

including both key-value databases and caching solutions. Many other caching-related products

exist, including GemFire, Hazelcast, and Oracle Coherence. They attempt to solve similar

problems, but do not necessarily aim to be a comprehensive database solution to service

caching and other use cases. This paper will focus on Memcached and Redis, however, the

architectural considerations apply to all NoSQL databases and caching solutions.

Redis

For businesses using MongoDB, Redis is often recommended as a caching add-on to solve

caching-related performance challenges. Redis is a popular data structure server. It runs in-

memory and has some snapshot persistence, but is not designed to be a highly persistent

database and has limitations around its partitioning model and workload isolation.

Memcached

At the other end of the spectrum, Memcached is a free, open source product that’s used in

thousands of web, mobile, and IoT applications around the world. It’s simple to install and deploy,

and it delivers reliable high performance. However, Memcached has no enterprise support

available, nor does it include a management console for monitoring. Many companies that

deploy Memcached find they want additional capabilities not included in Memcached, such as

automatic failover to avoid downtime and automatic rebalance to avoid cold caches.

Couchbase has some shared lineage with Memcached and addresses many of its limitations

while also serving as a complete document database solution.

Limitations of Redis

Redis is a key-value data structure server that is popular for in-memory caching solutions.

Companies who employ Redis typically use it on top of other products such as MongoDB or

MySQL to improve performance. It solves other use cases but is not generally recognized as

a document database. Common concerns with Redis include:

•	 Complexity – Redis data can be sharded across several nodes, but scripts and command line

utilities have to be run to redistribute data when adding/removing nodes. It also runs in a

primary/secondary (historically known as master-slave architecture), where the secondaries

are read-only. Couchbase uses a “masterless” approach. Couchbase tasks such as rebalance,

adding and failing over nodes, and more can all be done automatically.

•	 Lacks built-in features – As Redis is optimized for key-value lookups, the concept of

querying is different than most database users expect. Ad hoc query and indexing is

not possible with the core product If applications need a change to the data model,

then rehashing of data may be required. Couchbase provides an array of built-in query

and indexing services and allows them to run on different nodes – providing powerful

workload isolation.

Couchbase
Ephemeral Mode

Couchbase

automatically persists

to disk, enabling larger-

than-memory data.

However, Couchbase

also has a memory-only

Ephemeral mode, for

situations where you do

not ever want to invoke

the overhead of disk

access.

Couchbase
Memcached support

Memcached still

appears as an option

in Couchbase, for

purposes of backwards

compatibility. However,

it is deprecated and not

recommended for any

new development.

•	 Persistence – While Redis has the ability to persist data, it is still primarily an in-memory

focused layer. The persistence capabilities are designed to back up data and speed up the

“cold” restart process, but this impacts performance as it saves its snapshots to disk. It is

not designed for real-time storage and swapping of disk or in-memory datasets. Couchbase

is a complete database solution, able to efficiently load and persist data from/to disk as

expected from a database.

•	 Memory limitations – Redis datasets must fit into memory. This makes it very challenging for

larger datasets as they must scale up the machine or scale out the cluster of Redis nodes to

shard the data across nodes. Since Redis requires all data to be in memory, Redis does not

efficiently support rotating through a hot working set as requests shift over the course of a

day. This requires more hardware and increased licensing costs when data volumes start to

exceed memory. In contrast, Couchbase can load data that is larger than memory. Memory

quotas can be set to determine how much of the dataset is kept in RAM, with most used

data being read as needed into the cache for quick access.

Limitations of Memcached

Memcached is a simple, open source cache used by many companies, including YouTube,

Reddit, Craigslist, Facebook, Twitter, Tumblr, and Wikipedia. It’s an in-memory, key-value store

for small chunks of arbitrary data (strings, objects) from results of database calls, API calls, or

page rendering.

Key advantages of Memcached include:

•	 High performance – Memcached was engineered as a low latency, high throughput,

scalable cache. It is capable of delivering the throughput required by very large,

internet-scale applications.

•	 Simplicity – Intentionally designed as a pure, bare-bones cache, Memcached is very

simple to install and deploy.

•	 Low initial cost – Licensed under the Revised BSD license, Memcached is free open

source software.

Lack of enterprise support, built-in management, and advanced features

If you encounter an issue with Memcached, you need to rely on your own resources or the

Memcached community. There is no built-in management console, so users need to build

their own tools or find separate tooling to monitor its performance.

Memcached does not include advanced features that many enterprises require, such as

automatic failover, load rebalancing to add capacity without downtime, and cross data

center replication.

Couchbase builds on and extends the strengths of Memcached – including high performance

and simplicity – to deliver a more powerful replacement for Memcached, and a less complex,

and more powerful alternative to Redis.

WHITEPAPER 13

Beyond caching with a complete NoSQL solution

Modern applications must run in distributed environments and support millions of users globally

with submillisecond response times. Applications employ multiple technologies to meet these

requirements in their data layer. Technology choices are influenced by maturity, performance,

flexibility needs, and storage requirements. It’s not uncommon to have various systems of

record (the authoritative data source), wrapped in layers of caches (temporary data storage

for high performance). Databases serving as sources of truth, aggregating data from various

microservices for a single view, often require their own caches as well.

With its many integrated features, including a built-in managed cache, disk persistence, high

availability, geographic replication, structured query language, real-time analytics, full-text

search, eventing, and mobile synchronization, Couchbase consolidates multiple layers into

a single platform that otherwise would require separate solutions to work together.

How and where you deploy Couchbase is entirely up to you. Some use Couchbase just as a cache

or just as a system of record. Others start with Couchbase as a cache and eventually evolve it to

become a source of truth and system of record. Regardless of your strategy, Couchbase gives

you the flexibility to choose any starting point and easily evolve over time.

Couchbase is able to provide the performance of a caching layer, the flexibility of a source of

truth, and the reliability of a system of record. This reduces the need to manage data models

and consistency between multiple systems, learn different languages and APIs, and manage

independent technologies and the integrations between them.

Many leading enterprises have extended their Couchbase deployment to be the primary data

store, across a growing number of solutions including:

•	 Customer 360

•	 Catalog & inventory management

•	 Field service (mobile and edge)

•	 IoT data management

•	 Content management

•	 Mobile data management

•	 Operational dashboarding

•	 Product catalog & pricing

•	 Session store

•	 Shopping cart

•	 User profile store

Once you have implemented Couchbase as a cache – and start to experience lower costs, higher

performance, improved manageability, and easy scalability – you can start to consider how to

leverage the other benefits of the database, including SQL++, full-text search, real-time analytics,

server-side eventing, and more.

WHITEPAPER 14

At Couchbase, we believe data is at the heart of the enterprise. We empower developers and

architects to build, deploy, and run their mission-critical applications. Couchbase delivers a high-

performance, flexible and scalable modern database that runs across the data center and any

cloud. Many of the world’s largest enterprises rely on Couchbase to power the core applications

their businesses depend on.

For more information, visit www.couchbase.com.

© 2022 Couchbase. All rights reserved.

https://www.couchbase.com/

