
1The Ultimate Guide to Software Composition Analysis

Software
Composition
Analysis

The ultimate guide to SCA,
from Checkmarx

Open source code can take you anywhere. Travel safely Enter

2The Ultimate Guide to Software Composition Analysis

To detect potentially exploitable security
vulnerabilities, organizations that create
software tend to use solutions such as static,
dynamic, and interactive application security
testing (AST), to scan their custom and
compiled code.

While such solutions are effective at what
they are designed for (scanning proprietary
code), they are simply not designed to
examine the open source code that finds
its way into your custom software.

You need something else.
Software composition analysis.

Contents

Introduction 4

Section 1: Understanding open source software 5
- Open source code evolves over time 7

- The impact of open source code evolution 8

- Open source code vulnerability 9

- Example of an attack timeline 10

- Dealing with vulnerability alerts 12

- Working safely with open source components 13

- Managing licenses, compliance and regulatory requirements 13

- Application testing 14

Section 2: Understanding software
composition analysis (SCA) 15

- Key aspects of SCA 17

Section 3: A technical deep dive into SCA 18
- Open source detection methodologies 20

- Signature (or file system) scanning 21

- Package manager inspection 21

- Build dependency analysis 22

- Snippet scanning 22

- Component identification 23

- Risk metrics 23

- License risks 24

Section 4: What to consider when
choosing an SCA solution 25

Conclusion 27

Further Reading 28

4The Ultimate Guide to Software Composition Analysis

Introduction
Software composition analysis (SCA) is
the detection and identification of open
source or third-party components within
an application; and the provision of
detailed risk metrics on the vulnerabilities,
potential license conflicts, and outdated
libraries that relate to these elements.

Open source software has facilitated the rapid evolution of
application development, and shortened development cycles.
Its use is commonplace: many analysts report that open source
makes up over 80% of the average codebase.

However, there can be risks associated with using open source components
that organizations must identify, prioritize, and address:

Security vulnerabilities can leave sensitive data exposed
to a breach

Complex license requirements can jeopardize your
intellectual property

Outdated open source libraries can place unnecessary support
and maintenance burdens on your development teams

Organizations therefore need insight into open source security vulnerabilities
within their software, including risk severity metrics, detailed descriptions,
and remediation guidance, and that’s what software composition analysis
solutions should deliver.

The ultimate guide to SCA

5The Ultimate Guide to Software Composition Analysis

Understanding
open source
software

S E C T I O N 1

6The Ultimate Guide to Software Composition Analysis

Understanding
open source
software

Custom (or proprietary) code has been originally developed
by a person or a team, and is the intellectual property of that
organization or individual.

Custom code is maintained by the creators or owners of that code, so any innovation
or enhancements to it must be made by those responsible, including new releases,
patches and any updates required to fix vulnerabilities. Custom code can be
incorporated into other projects or released as a complete software application.

Open source code is also created by developers, often as a
part of a community-driven project through which ideas and
contributions are shared.

This code, or software, is made available to the community as components or
projects. Because the innovation happens organically within the community,
updates, patches, and new releases are the responsibility of that community.
As a project or component evolves over time, it can have associated licenses that
detail any restrictions, permissions, or requirements that the project originator
has chosen to place upon it.

Understanding open source software

7The Ultimate Guide to Software Composition Analysis

Master

New Dev Branch

Bug Fix Branch

New Feature Branch Users

Open source code evolves
over time

An open source component or project begins
with a master branch, which is evolved and
changed by the open source community as
they add more branches to modify the code.
This is usually with the aim of adding new
features or functionality, performing bug
fixes, and undertaking testing.

The new branches are then usually merged into the
master branch, to become part of the main project.
Or, they are maintained as a separate fork, when
contributors or groups modifying the project intend
to take it in a new direction, or change it to suit
another use case.

Understanding open source software

8The Ultimate Guide to Software Composition Analysis

Understanding open source software

The impact of open source code evolution

While two components may share a name, they may differ
greatly. While one vendor’s take on an open source component
may be fundamentally the same as another’s, they may have
made some minor changes to suit their needs.

As each component branch (known as a distribution, or distro) goes through
changes, this can eventually create significant differences between versions
of what might have started out as the same component. These differences
can potentially introduce additional maintenance and development costs,
or expose you to unexpected security and compatibility issues.

9The Ultimate Guide to Software Composition Analysis

Open source components are used everywhere and, as with
custom code, there are situations in which open source
components can be vulnerable. It’s important to understand
the difference between a vulnerable component and vulnerable
versions of that component.

A component can contain vulnerabilities, but only in certain versions. It all depends
on how that software is constructed and how it evolves over time.

 Newer versions may not contain the same vulnerabilities
that the original or previous versions did.

Others may contain their own vulnerabilities that did not
exist in previous versions.

 A component version with no vulnerability may have a
vulnerability introduced into it in the future.

Open source code
vulnerability

Not every open source component will be vulnerable,
and not all vulnerabilities may be exploitable.

Understanding open source software

10The Ultimate Guide to Software Composition Analysis

Understanding open source software

Component and software is vulnerable

and/or
Component Version

Released
Vulnerability
Discovered

Patch
Applied

Patch
Released

Example of an attack timeline
Attackers first have to discover a vulnerability, then
develop an exploit to take advantage of it in order
to compromise the software. Even then, how that
component is incorporated into the overall code of
the application may determine whether the exploit
can be executed.

Exploit
Published

Vulnerability
listed on

database(s)

• After a component version is released,
a vulnerability is discovered within it.
It could be the creators who discover the
vulnerability, maybe a security research
team, or perhaps attackers.

• The vulnerability may be documented in a
vulnerability database (like the NVD), or those
who discover it may keep it secret for some
time while working on a patch, or an exploit.

• Once the patch is released, there may be
a lag before it is applied everywhere the
component has been used.

• In the meantime, an exploit may be developed
and used secretly, or (as is often the case)
published among attacker communities or
on public forums such as YouTube so anyone
can use it.

11The Ultimate Guide to Software Composition Analysis

The time between the exploit being discovered and
the patch being applied is the window of opportunity
for an attacker to infiltrate the application, potentially
compromising data, intellectual property, or simply
impeding the application’s performance.

Clearly, there is a need to
patch vulnerabilities quickly.

Understanding open source software

12The Ultimate Guide to Software Composition Analysis

Understanding open source software

Depending on the source or origin of the component, you
may be notified when they’re discovered, or you may not.
For example, components from Red Hat or Apache may
yield helpful alerts when vulnerabilities are discovered,
or when patches are available to remedy them.

Components from community-driven development groups may not have
such proactive alerting, making it your responsibility to identify and fix
these risks, whether you have the support of the community or not.

Dealing with
vulnerability alerts

13The Ultimate Guide to Software Composition Analysis

Managing licenses, compliance
and regulatory requirements
It’s not just vulnerabilities that you will need to check your code for. Organizations
that create software are often subject to external and internal standards and
requirements, such as customer SLAs, internal specifications, and data protection
regulation. Open source projects may also have licensing restrictions or requirements,
determined by the author or originator of the component.

Open source projects can have virtually any licensing structure. There are two
main categories of open source licenses: reciprocal (or copyleft) licenses, and
permissive licenses.

• Reciprocal licenses generally place restrictions or requirements on the distribution,
attribution, or release of source code associated with the component, or the projects
into which that component is incorporated.

• Permissive licenses generally place minimal requirements on software distribution
and attribution.

Common examples of open source licenses include GPL 3.0, MIT License, and Apache
2.0. There are also some examples of licenses that illustrate how an author can be free
to create their own. These include the WTFPL license (Do What the **** You Want To
Public License), which is completely open, and the Beerware License, which requires
that anyone who leverages a component with that license buys the author a beer.

It’s essential to be aware of the licensing requirements that your organization – and
your application – is subject to, and ensure you have the software security testing
solutions in your arsenal to help you ensure compliance on an ongoing basis.

Understanding open source software

Working safely with
open source components

You need the right tools, methods, and
processes firmly established to create stable
and secure software from your mix of custom
code and open source components. Your
developers work in a complex software
development environment, with many aspects
which must be configured and maintained to
produce viable software.

14The Ultimate Guide to Software Composition Analysis

Understanding open source software

Application testing
The tools and gadgets your developers, security, and DevOps teams use
are instrumental to the performance, stability, and security of the software
your organization publishes. When your software uses a mix of custom
code and open source components, the application security testing you
use needs to be purpose-built to examine, identify, triage, and remediate
any issues across all types of code.

Organizations tend to use static application security testing (SAST), dynamic
application security testing (DAST), interactive application security testing
(IAST), and software composition analysis (SCA).

SAST
Reviews source code to identify
the sources of vulnerabilities

DAST
Is a so-called ‘black-box’
testing method that looks
at functionality and tests by
performing attacks – it does
not look at the source code

IAST
Is a combination of both SAST
and DAST methodologies

SCA
Identifies open source code and
components, matching them
with known vulnerabilities, such
as those listed on the National
Vulnerability Database (NVD)

SAST examines source code directly to look for weaknesses or
vulnerabilities in the code that could be exploited. This analysis can be
lengthy process, depending on the size of the codebase being analyzed,
and can generate huge volumes of results that need to be addressed. Any
identified vulnerabilities must be removed, and those code components
rewritten. This can take considerable time and effort.

SCA does not examine the source code itself – it looks for open source
components within it. It needs to be able to detect and identify open source
components within the software and match those identified versions
against a database of vulnerabilities. Any vulnerabilities that are identified
within that software then need to be patched or replaced.

Application testing is part of
the development process
Review your development environment, CI/CD pipeline, SDLC, and
DevOps practices and evaluate how you have integrated those necessary
technologies along the way. You shouldn’t wait until the security testing
phase to identify vulnerable open source components within your software.
Use the right solutions during the process, not afterwards.

In summary: if you use open source components, you must have
a way of analyzing the composition of your software to ensure
the components you’re using are safe and licensed appropriately.
To do this properly, software composition analysis (SCA) is a
critical resource.

15The Ultimate Guide to Software Composition Analysis

Understanding
software
composition
analysis (SCA)

S E C T I O N 2

16The Ultimate Guide to Software Composition Analysis

Understanding
software
composition
analysis (SCA)

Software composition analysis is the standard term for
analyzing software, discovering open source components
and third-party libraries within it, and identifying the
associated risks.

SCA focuses on measuring two main types of risks: security risk (open source
vulnerabilities) and license risk (noncompliance, or conflicts between open
source licenses). Sometimes, there may be a third, non-standard category
of risk that explores community activity surrounding the component.

When it first appeared around a decade ago, SCA originally focused on license
compliance for software and embedded technologies, such as hardware and
chipsets. However, with the rapid growth in the use of open source code,
software security has become its biggest use case, and SCA is now evolving to
extend its influence across application security testing (AST), with some SCA
solutions integrating and correlating data with SAST solutions to better assess
exploitability and examine if vulnerable components are actually being used
by the application.

SCA is essential to secure software development.

Understanding software composition analysis (SCA)

17The Ultimate Guide to Software Composition Analysis

Understanding software composition analysis (SCA)

Key aspects of SCA

When an effective SCA solution is integrated into an organization’s continuous
integration/continuous delivery (or development) pipeline (CI/CD) and software
development lifecycle (SDLC), it enables development, security, and DevOps teams
to prioritize and focus their remediation efforts where they will be most effective
and least costly, before any potentially at-risk projects go into production.

An SCA solution must be able to:

• accurately detect and identify open
source components and component
versions in use within software

• provide insight into vulnerabilities
associated with those components
and component versions, as well as
any licenses that may apply to them

• provide actionable risk insight and
remediation guidance

• allow organizations to configure
and enforce policies against the
analysis results

• integrate with tools that your
organization is using in its SDLC
or CI/CD pipelines

• deliver insight and results to
relevant people, in the format
that is most helpful to them

Some SCA solutions might include additional functionality:

• the ability to identify if a vulnerable open source component version is exploitable

• metrics associated with component bugs and community activity

• correlation of analysis results with other application security testing solutions

18The Ultimate Guide to Software Composition Analysis

A technical
deep dive
into SCA

S E C T I O N 3

19The Ultimate Guide to Software Composition Analysis

2 31

A technical deep dive into SCA

Detection

Open source detection is the process of finding
open source components within software and
codebases. Some approaches to detection yield
a high number of false positives and take a
long time to complete, while others yield higher
accuracy in a shorter amount of time, with
slightly more up-front configuration.

Identification

Next, SCA identifies the open source
components it has detected by referencing
a database of open source component
information. The output usually includes
basic component version information, and
may include details of where the component
version came from, plus other metadata.

Risk metrics

The solution produces risk metrics based on
what has been detected and identified – this
is almost always security information and
license data. This also involves checking against
a reference database (or databases) covering
vulnerability and license data. It may include
data exclusive to the solution vendor, if they
have a security research team.

A technical deep dive into SCA

Software composition analysis happens in three major steps:

20The Ultimate Guide to Software Composition Analysis

A technical deep dive into SCA

Open source
detection methodologies

Not all SCA solutions take the same approach to detection. For example, some
solutions will perform signature scanning, which generates a SHA-1 hash
signature of each open source component it detects. These alphanumeric strings
uniquely represent individual components, like fingerprints. The SCA solution
then tries to match these hash signatures against those listed in a database of
previously scanned open source components.

Some SCA solutions will look at the files created by your build tools and package
managers: package manager inspection. This can determine the specific
version of each component being used – it’s the equivalent of checking what the
developers say is in the software.

Finally, an SCA solution may also conduct build dependency analysis, examining
the software after development. This identifies any dependencies that have not
been declared but were brought into the application during the build process –
such dependencies could present a potential risk by introducing vulnerabilities
into software.

21The Ultimate Guide to Software Composition Analysis

A technical deep dive into SCA

Signature (or file system) scanning
The main benefit of signature scanning is its ability to produce a large number of
results. This can be perceived as the most complete or comprehensive representation
of all the open source components within a codebase.

Signature scanning can detect any non-declared components that may not have been
included in the package manager files, or can be used if the software was built without
the use of package managers.

However, the scanning process can take a long time, consumes a lot of compute power,
and produces a large volume of results that need to be reviewed – often including a
significant number of false positives. When time is short and production deadlines are
getting closer, this methodology may cause you more headaches than it resolves.

Package manager inspection
When an SCA solution uses package managers to detect open source components,
you will see a few more benefits. The results tend to be highly accurate, with very
few false positives, and with less noise and fewer junk results, it is easier for your
developers or security teams to review the output and prioritize their efforts.

These scans also tend to be a lot faster, and this methodology is more suitable
for DevOps thanks to its integration with the CI/CD tools that developers are
already using.

22The Ultimate Guide to Software Composition Analysis

A technical deep dive into SCA

Build dependency analysis
If open source components have not been declared, or if the software is
built without the use of package managers (as we often see in some legacy
applications), package manager inspection may not identify all open source
elements within the analyzed codebase. This is why solution providers often
pair package manager inspection with build dependency analysis.

Build dependency analysis detects any non-declared dependencies that have
been incorporated during a build, or any dependencies of dependencies
(transitive dependencies).

Snippet scanning
Snippet scanning is similar to signature scanning. Rather than looking at entire
open source components, the SCA solution performs a signature scan of smaller
subsets of code, referencing a database of previously scanned and documented
component segments.

Snippet scanning can help identify potential license requirements, license conflicts,
or risk of noncompliance resulting from a developer copying a small piece of code
from a larger body of work. This is predicated on the results of a snippet scan
being matched to an original open source component.

Unsurprisingly, snippet scanning takes a long time and consumes a lot of compute
resources. The results can be noisy, with a long list of potential matches, a low
certainty of exact matches, and a high prevalence of false positives. These snippet
results are virtually worthless at identifying vulnerabilities, since a vulnerability
does not need to exist within a small snippet of code. This type of scanning usually
benefits only license-oriented use cases.

23The Ultimate Guide to Software Composition Analysis

Component
identification

Risk metrics

After open source components have been detected using one or several methods, they
need to be identified. Often, component metadata is referenced against a database of
open source components maintained by the solution vendor. Such databases contain
information from various code repositories and sources, such as GitHub, Maven
Central, and many others.

If a match for the detected component is found in the database, its information is
displayed by the SCA solution. This is where the risk of false positives is greatest, and
where selecting the right detection method can have the greatest positive impact on
the quality and actionability of your results.

Once open source components have been detected and identified, the SCA solution
needs to generate associated risk metrics. This is essential for prioritizing where to
focus your efforts, in order to improve your risk posture.

Firstly, identified component versions are checked against databases of vulnerabilities
and licenses. Security and license risks are reported back to the SCA tool’s analytics
UI (user interface) and associated with the components that were analyzed in the
codebase.

Security risk often has standardized scoring, usually, CVSS2.0 or CVSS3.0, but it’s
important to recognize that risk metrics are not always standardized. The determined
severity or priority associated with risk metrics can vary by SCA solution vendor. Where
non-standard scoring is used, it’s usually possible to adjust sensitivity to risk, based
on criteria associated with the project that’s being scanned. This is not a standard
capability for all SCA solutions and does prevent comparison of the risk profile of one
project against the relative risk profile of another.

A technical deep dive into SCA

24The Ultimate Guide to Software Composition Analysis

License risks Security risk metrics are among the most common criteria
for organizational policy rules. License risks, however, are
highly contextual, and can vary, depending on how the
application is deployed.

Other components or licenses within the application may also impact license risk:
this is known as license conflict. If an application uses open source components
with both permissive and reciprocal licenses, this can lead to some complicated
results, and any royalties or attribution requirements may be a concern. These
various factors can determine the severity of your license risk.

While there is no standardized measure of license risk, it’s generally accepted that
licenses which cost money, restrict use, or require sharing intellectual property
from the associated codebase are all generally considered to be higher risk.

In terms of SCA, license risk is usually most relevant to embedded devices or
chipset manufacturers. This is particularly relevant to use of the internet of
things (IoT), and to tier-one and tier-two automotive industry suppliers, system
integrators, and other organizations where it can be hard to access, replace, or
update the software, or the device on which the software sits. This tends to be
the case in industries where potential loss of intellectual property due to license
conflicts or noncompliance can be devastating.

A technical deep dive into SCA

• Is it an internal application that’s on company servers and not for public
or commercial use?

• Is it an external-facing application?

• Is it a commercial application?

25The Ultimate Guide to Software Composition Analysis

What to consider
when choosing an
SCA solution

S E C T I O N 4

26The Ultimate Guide to Software Composition Analysis

What to consider when
choosing an SCA solution
Focus on solutions with higher
accuracy and fewer false positives.
Comprehensive results can be good, but only
if you have the time to review and verify them
all. It’s also worth noting that risk metrics aren’t
standardized across vendors, and can vary in
severity or priority.

Highly consider vendors whose
solution is supported by a dedicated
security research team.
Make sure the vendor is proactively finding
zero day or non-public vulnerabilities, and
enhancing their existing security records.

Look for vendors that provide a
comprehensive list of any publicly
reported vulnerabilities in open
source components.
These need to be accompanied by
appropriate remediation guidance.

Ensure the solution will fully support
the requirements of your security,
legal, and engineering teams.
It should enable them to configure and
enforce policies against the analysis results.

Prioritize solutions that are part
of a complete application security
testing (AST) portfolio.
Or those that complement what you’re
currently using.

Certify available integrations
with your package managers, build
tools, code repositories, issue
management solutions, and so on.
Give priority to solutions which enable
cross-product synergy, which will help to
prioritize your remediation efforts and enhance
the accuracy and actionability of the analysis.

Verify that the solution integrates
with the tools you’re already using
in your SDLC or CI/CD pipelines.
It must enable you to automatically
trigger scans, share results, and reduce
time-to-remediation.

Validate that the solution supports
unified user management, project
creation, and scan initiation
capabilities for multiple testing
technologies.
Solutions that do this will yield the
greatest efficiencies and reduce your
total cost of ownership.

What to consider when choosing an SCA solution

27The Ultimate Guide to Software Composition Analysis

Conclusion Open source components are not going to disappear any time
soon. Organizations therefore need to use SCA as part of their
software security strategy.

The key to implementing SCA successfully is to select a solution that
can be integrated with your software development tools, that supports
internal and external standards for risk tolerance and compliance, and
gets detailed insight promptly into the hands of the people who need it.

Many security experts expect to see an uptick in cybercriminals
exploiting vulnerable open source libraries to gain access to sensitive
and valuable data. This trend is likely to increase due tothe prevalence
and accessibility of open source components, and the (historically)
inadequate documentation, evaluation, and monitoring of the risks
they contain. Clearly, software composition analysis solutions are
needed now, and will be required well into the future.

28The Ultimate Guide to Software Composition Analysis

Further reading: Datasheet

Download the Checkmarx CxSCA
datasheet

eBook

2020 Gartner Magic Quadrant
for Application Security Testing

Website

Discover next generation open
source security: Checkmarx CxSCA

https://info.checkmarx.com/hubfs/Datasheets/CxSCA%20Datasheet%20Checkmarx%20Software%20Composition%20Analysis.pdf
https://info.checkmarx.com/hubfs/Datasheets/CxSCA%20Datasheet%20Checkmarx%20Software%20Composition%20Analysis.pdf
https://info.checkmarx.com/gartner-mq-2020?utm_source=sca-ultimate-guide&utm_medium=pdf&utm_campaign=OpenSourceSec
https://info.checkmarx.com/gartner-mq-2020?utm_source=sca-ultimate-guide&utm_medium=pdf&utm_campaign=OpenSourceSec
https://www.checkmarx.com/products/software-composition-analysis/?utm_source=sca-ultimate-guide&utm_medium=pdf&utm_campaign=OpenSourceSec
https://www.checkmarx.com/products/software-composition-analysis/?utm_source=sca-ultimate-guide&utm_medium=pdf&utm_campaign=OpenSourceSec

©Checkmarx 2021. All rights reserved.

Checkmarx is the global leader in software security solutions for modern enterprise software
development. Checkmarx delivers the industry’s most comprehensive Software Security
Platform that unifies with DevOps and provides static and interactive application security
testing, software composition analysis, and developer AppSec awareness and training
programs to reduce and remediate risk from software vulnerabilities. Checkmarx is trusted
by more than 40 of the Fortune 100 companies and half of the Fortune 50, including leading
organizations such as SAP, Samsung, and Salesforce.com.

About Checkmarx

https://www.checkmarx.com/?utm_source=DSCEGuide&utm_medium=PDF&utm_campaign=CxCodebashing
https://www.checkmarx.com/?utm_source=sca-buyers-guide-checklist&utm_medium=pdf&utm_campaign=sca

	Button 3:

